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1. Introduction

Relativistic hydrodynamics is an important theoretical tool in heavy-ion physics, astro-

physics, and cosmology. Hydrodynamics gives reliable description of the non-equilibrium

real-time macroscopic evolution of a given system. It is an effective description in terms of

a few relevant variables (fields) and it applies to the evolution which is slow, both in space

and in time, relative to a certain microscopic scale [1, 2].

In the most common applications of hydrodynamics the underlying microscopic theory

is a kinetic theory. In this case the microscopic scale which limits the validity of hydrody-

namics is the mean free path ℓmfp. In other words, the parameter controlling the precision

of hydrodynamic approximation is kℓmfp, where k is the characteristic momentum scale of

the process under consideration.

More generally, the underlying microscopic description is a quantum field theory, which

might not necessarily admit a kinetic description. An experimental example of such a

system is the strongly coupled quark-gluon plasma (sQGP) recently discovered at the

Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. The N =

4 supersymmetric SU(Nc) Yang-Mills theory in the limit of strong coupling provides a

theoretical example of such a system which, in the limit of large number of colors Nc,

can be studied analytically using the AdS/CFT correspondence [3]. In these cases, where

kinetic description may be absent, the role of the parameter ℓmfp is played by some typical

microscopic scale. In the above examples this scale is set by the temperature: ℓmfp ∼ T−1.

When the parameter kℓmfp is not too small, one may want to go beyond the first order

in kℓmfp. This is the case, for example, in the early stages of heavy-ion collisions. There

are two sources of corrections beyond the kℓmfp order. First, there are corrections due

to thermal fluctuations of hydrodynamic variables contributing via nonlinearities of the

hydrodynamic equations. The fluctuation corrections lead to nonanalytic low-momentum

behavior of certain correlators [4] (similarly to the chiral logarithms that emerge from loops

in chiral perturbation theory) and are, for example, essential for describing non-trivial

dynamical critical behavior near phase transitions [5]. Such corrections are calculable in

the framework of hydrodynamics with thermal noise.

The second source of corrections are second-order terms (order (kℓmfp)
2) in the hydro-

dynamic equations, sometimes called the Burnett corrections [6]. These corrections come

with additional transport coefficients. These second-order transport coefficients are not

calculable from hydrodynamics, but have to be determined from underlying microscopic

description or input phenomenologically, similarly to first-order transport coefficients such

as viscosity.

In gauge theories with a large number of colors Nc the corrections of the first type

(fluctuation) are suppressed by 1/N2
c [4] and therefore the corrections of the second type

(Burnett) dominate in the limit of fixed k and Nc → ∞. For this reason, in this paper,

we concentrate on the second type of corrections. Moreover, we shall consider the case of

conformal theories, where the number of second-order transport coefficients is substantially

reduced. In the real-world applications we deal with fluids which are not exactly conformal,

however, e.g., QCD at sufficiently high temperatures is approximately conformal.
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This paper is organized as follows. In section 2 we derive the consequences of conformal

symmetry for hydrodynamics. In section 3 we classify all terms of order k2 consistent with

conformal symmetry. In section 4 we compute three of the five new transport coefficients for

the strongly-coupled N = 4 supersymmetric Yang-Mills (SYM) theory using the AdS/CFT

correspondence. In section 5 we show that hydrodynamic equations derived from the kinetic

description (Boltzmann equation) of a weakly coupled conformal theory do not contain all

allowed second-order terms. In section 6, we analyze our findings from the point of view

of the Müller-Israel-Stewart theory [7 – 10], which involves only one new parameter at the

second order, and show that this parameter cannot account for all second-order corrections.

Our conclusions are summarized in section 7.

2. Conformal invariance in hydrodynamics

To set the stage, let us emphasize again that hydrodynamics is a controlled expansion

scheme ordered by the power of the parameter kℓmfp, or equivalently, by the number of

derivatives of the hydrodynamic fields. We shall set up this expansion paying particular

attention to the consequences of the conformal invariance on the equations of hydrody-

namics.

2.1 Conformal invariance and Weyl anomalies

The hydrodynamic fields are expectation values of certain quantum fields, such as e.g.,

components of the stress-energy tensor, averaged over small but macroscopic volumes and

time intervals. Such averages can, in principle, be calculated in the close-time-path (CTP)

formalism [11]. Consider a generic finite-temperature field theory in the CTP formulation.

Turning on external metrics on the upper and lower contours, the partition function is

Z[g1
µν , g2

µν ] =

∫

Dφ1 Dφ2 exp
{

iS[φ1, g
1
µν ] − iS[φ2, g

2
µν ]
}

, (2.1)

where φ1 and φ2 represent the two sets of all fields living on the upper and lower parts of

the contours, and S[φ, gµν ] is the general coordinate invariant action.

The one-point Green’s function of the stress-energy tensor is obtained by differentiating

the partition function (the metric signature here is − + ++):

〈T 1µν〉 = − 2i√−g1

δ ln Z

δg1
µν

, (2.2)

〈T 2µν〉 =
2i√−g2

δ ln Z

δg2
µν

, (2.3)

where 〈. . .〉 denote the mean value under the path integral and
√−g1,2 ≡

√

−detg1,2
µν .

In this paper we consider conformally invariant theories. In such theories the action

S[φ, gµν ] evaluated on classical equations of motion δS/δφ = 0 and viewed as a functional

of the external metric gµν is invariant under local dilatations, or Weyl transformations:

gµν → e−2ωgµν , (2.4)
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with parameter ω a function of space-time coordinates. As a consequence, classical stress-

energy tensor T µν
cl ≡ δS/δgµν is traceless since gµνT µν

cl = −(1/2)δS/δω = 0.

In the conformal quantum theory (2.1) the Weyl anomaly [12, 13] implies

g1
µν〈T 1µν〉 = Wd[g

1
µν ], (2.5a)

g2
µν〈T 2µν〉 = Wd[g

2
µν ], (2.5b)

where Wd is the Weyl anomaly in d dimensions, which is identically zero for odd d. For

d = 4:

W4[gµν ] = − a

16π2
(RµνλρR

µνλρ − 4RµνRµν + R2) +
c

16π2
(RµνλρR

µνλρ − 2RµνRµν + 1
3R2),

(2.6)

where Rµνλρ and Rµν (R) are the Riemann tensor and Ricci tensor (scalar), and for SU(Nc)

N = 4 SYM theory a = c = 1
4

(

N2
c − 1

)

[14]. The right-hand side of eqs. (2.5) contains

four derivatives. In general, for even d = 2k, W2k contains 2k derivatives of the metric.

Let us now explore the consequences of Weyl anomalies for hydrodynamics. The

hydrodynamic equations (without noise) do not capture the whole set of CTP Green’s

functions, but only the retarded ones. Hydrodynamics determines the stress-energy tensor

T µν (more precisely, its slowly varying average over sufficiently long scales) in the presence

of an arbitrary (also slowly varying) source gµν . The connection to the CTP partition

function can be made explicit by writing

g1
µν = gµν +

1

2
γµν , g2

µν = gµν − 1

2
γµν . (2.7)

If γµν = 0 then Z = 1 since the time evolution on the lower contour exactly cancels out

the time evolution on the upper contour. When γµν is small one can expand

ln Z =
i

2

∫

dx
√

−g(x) γµν(x)T µν(x) + O(γ2), (2.8)

where T µν(x) depends on gµν , and is the stress-energy tensor in the presence of the source

gµν . At long distance scales it should be the same as computed from hydrodynamics.

Substituting eqs. (2.7) and (2.8) into eq. (2.5), the O(1) and O(γ) terms yield two

equations:

gµνT µν = Wd[gµν ], (2.9a)

gµν(x)
δ[
√

−g(x) Tαβ(x)]

δgµν(y)
+
√

−g(x)Tαβ(x)δd(x − y) =
δ

δgαβ(y)
(
√

−g(x) Wd[gµν(x)]).

(2.9b)

In odd dimensions, the right hand sides of eqs. (2.9) are zero. In even dimensions, they con-

tain d derivatives. In a hydrodynamic theory, where one keeps less than d derivatives, they

can be set to zero. For example, at d = 4, the Weyl anomaly is visible in hydrodynamics

only if one keeps terms to the fourth order in derivatives. This is two orders higher than

in second-order hydrodynamics considered in this paper. For larger even d, one has to go
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to even higher orders to see the Weyl anomaly. Thus, we can neglect Wd on the right hand

side: second-order hydrodynamic theory is invariant under Weyl transformations. The two

conditions (2.9) then become

gµνT µν = 0, (2.10)

gµν
δTαβ(y)

δgµν(x)
= −

(

d

2
+ 1

)

δd(x − y)Tαβ(x). (2.11)

Since the r.h.s. of equation (2.11) is −(1/2)δT µν/δω it implies the following tranformation

law for T µν under Weyl transformations (2.4):

T µν → e(d+2)ω T µν . (2.12)

Noting that ln Z is invariant under Weyl transformations this could have been gleaned from

eq. (2.8) already.

A simple rule of thumb is that for tensors transforming homogeneously

Aµ1...µm
ν1...νn

→ e∆A ωAµ1...µm
ν1...νn

, (2.13)

the conformal weight ∆A equals the mass dimension plus the difference between the number

of contravariant and covariant indices:

∆A = [A] + m − n. (2.14)

2.2 First order hydrodynamics as derivative expansion

The existence of hydrodynamic description owes itself to the presence of conserved quanti-

ties, whose densities can evolve (oscillate or relax to equilibrium) at arbitrarily long times

provided the fluctuations are of large spatial size. Correspodingly, the expectation values

of such densities are the hydrodynamic fields.

In the simplest case we shall consider here, i.e., in a theory without conserved charges,

there are 4 such hydrodynamic fields: energy density T 00 and 3 components of the momen-

tum density T 0i. It is common and convenient to use the local velocity uµ instead of the

momentum density variable. It can be defined as the boost velocity needed to go from the

local rest frame, where the momentum density T 0i vanishes, back to the lab frame. Simi-

larly, it is convenient to use ε — the energy density in the local rest frame — instead of the

T 00 in the lab frame. The 4 equations for thus defined variables ε and uµ are conservation

equations of the energy-momentum tensor ∇µT µν = 0.

In a covariant form the above definitions of ε and uµ can be summarized as

T µν = ε uµuν + T µν
⊥ . (2.15)

In hydrodynamics, the remaining components T µν
⊥ (spatial in the local rest frame: uµT µν

⊥ =

0) of the stress-energy tensor T µν appearing in the conservation equations are not indepen-

dent variables, but rather instantaneous functions of the hydrodynamic variables ε and uµ

and their derivatives. In the hydrodynamic limit, this is the consequence of the fact that
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the hydrodynamic modes are infinitely slower than all other modes, the latter therefore can

be integrated out. All quantities appearing in hydrodynamic equations are averaged over

these fast modes, and are functions of the slow varying hydrodynamic variables. The func-

tional dependence of T µν
⊥ (constituitive equations) can be expanded in powers of derivatives

of ε and uµ.

Writing the most general form of this expansion consistent with symmetries gives, up

to 1st order in derivatives,

T µν
⊥ = P (ε)∆µν − η(ε)σµν − ζ(ε)∆µν(∇·u) , (2.16)

where the symmetric, transverse tensor with no derivatives ∆µν is given by

∆µν = gµν + uµuν . (2.17)

In the local rest frame it is the projector on the spatial subspace. The symmetric, transverse

and traceless tensor of first derivatives σµν is defined by

σµν = 2〈∇µuν 〉 , (2.18)

where for a second rank tensor Aµν the tensor defined as

〈Aµν 〉 ≡ 1

2
∆µα∆νβ(Aαβ + Aβα) − 1

d − 1
∆µν∆αβAαβ ≡ A〈µν〉 (2.19)

is transverse uµA〈µν〉 = 0 (i.e., only spatial components in the local rest frame are nonzero)

and traceless gµνA〈µν〉 = 0.

In the gradient expansion (2.16), the scalar function P (ε) can be identified as the

thermodynamic pressure (in equilibrium, when all the gradients vanish), while η(ε) and ζ(ε)

are the shear and bulk viscosities. The expansion coefficients P , η and ζ are determined by

the physics of the fast (non-hydrodynamic, microscopic) modes that have been integrated

out.

2.3 Conformal invariance in first-order hydrodynamics

It is straightforward to check that if T µν transforms as in eq. (2.12) and T µ
µ = 0, then

its covariant divergence transforms homogeneously: ∇µT µν → e(d+2)ω∇µT µν , hence the

hydrodynamic equation ∇µT µν = 0 is Weyl invariant [15].

Let us now see what restrictions conformal invariance imposes on the first-order con-

stitutive equations (2.16). First, the tracelessness condition T µ
µ = 0 forces ε = (d − 1)P

and ζ = 0. Since in a conformal theory ε = const·T d, we shall trade ε variable for T in

what follows. Since gµνuµuν = −1 the conformal weight of uµ is 1. By definition (2.15)

and by (2.12) ε has conformal weight d and therefore

T → eωT, uµ → eωuµ (2.20)

in accordance with the simple rule (2.14).

By direct computation we find that

σµν → e3ωσµν , (2.21)
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i.e. σµν transforms homogeneously with conformal weight 3 independent of d (in agree-

ment with (2.14)). For conformal fluids η = const · T d−1, and therefore T µν transforms

homogeneously under Weyl transformation as in eq. (2.12).

3. Second-order hydrodynamics of a conformal fluid

In this section we shall continue the derivative expansion (2.16). We shall write down all

possible second-order terms in the stress-energy tensor allowed by Weyl invariance. Then

we shall compute the coefficients in front of these terms in the N = 4 SYM plasma by

matching hydrodynamic correlation functions with gravity calculations in section 4.

3.1 Second-order terms

Rewriting eq. (2.15) we introduce the dissipative part of the stress-energy tensor, Πµν :

T µν = εuµuν + P∆µν + Πµν , (3.1)

which contains only the derivatives and vanishes in a homogeneous equilibrium state. The

tensor Πµν is symmetric and transverse, uµΠµν = 0. For conformal fluids it must be also

traceless gµνΠµν = 0. To first order

Πµν = −ησµν + (2nd order terms), (3.2)

where σµν is defined in eq. (2.18). We will also use the notation for the vorticity

Ωµν =
1

2
∆µα∆νβ(∇αuβ −∇βuα) . (3.3)

We note that in writing down second-order terms in Πµν , one can always rewrite the

derivatives along the d-velocity direction

D ≡ uµ∇µ (3.4)

(temporal derivative in the local rest frame) in terms of transverse (spatial in the local rest

frame) derivatives through the zeroth-order equations of motion:

D ln T = − 1

d − 1
(∇⊥ · u), Duµ = −∇µ

⊥ ln T, ∇µ
⊥ ≡ ∆µα∇α . (3.5)

Notice also that ∇⊥ · u = ∇ · u.

With the restriction of transversality and tracelessness, there are eight possible contri-

butions to the stress-energy tensor:

∇〈µ ln T ∇ν〉 ln T, ∇〈µ∇ν〉 ln T, σµν(∇·u), σ〈µ
λσν〉λ

σ〈µ
λΩν〉λ, Ω〈µ

λΩν〉λ, uαRα〈µν〉βuβ, R〈µν〉 .
(3.6)

By direct computations we find that there are only five combinations that transform

homogeneously under Weyl tranformations. They are

Oµν
1 = R〈µν〉 − (d − 2)

(

∇〈µ∇ν〉 lnT −∇〈µ ln T ∇ν〉 ln T
)

, (3.7)

Oµν
2 = R〈µν〉 − (d − 2)uαRα〈µν〉βuβ , (3.8)

Oµν
3 = σ〈µ

λσν〉λ , Oµν
4 = σ〈µ

λΩν〉λ , Oµν
5 = Ω〈µ

λΩν〉λ . (3.9)

– 7 –
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In the linearized hydrodynamics in flat space only the term Oµν
1 contributes. For

convenience and to facilitate the comparision with the Israel-Stewart theory we shall use

instead of (3.7) the term

〈Dσµν 〉 +
1

d − 1
σµν(∇·u) (3.10)

which, with (3.5), reduces to the linear combination: Oµν
1 − Oµν

2 − (1/2)Oµν
3 − 2Oµν

5 .

It is straightforward to check directly that (3.10) transforms homogeneously under Weyl

transformations.

Thus, our final expression for the dissipative part of the stress-energy tensor, up to

second order in derivatives, is

Πµν = −ησµν

+ ητΠ

[

〈Dσµν 〉 +
1

d − 1
σµν(∇·u)

]

+ κ
[

R〈µν〉 − (d − 2)uαRα〈µν〉βuβ

]

+ λ1σ
〈µ

λσν〉λ + λ2σ
〈µ

λΩν〉λ + λ3Ω
〈µ

λΩν〉λ .

(3.11)

The five new constants are τΠ, κ, λ1,2,3. Note that using lowest order relations Πµν =

−ησµν , eqs. (3.5) and Dη = −η∇·u, eq. (3.11) may be rewritten in the form

Πµν = −ησµν − τΠ

[

〈DΠµν 〉 +
d

d − 1
Πµν(∇·u)

]

+ κ
[

R〈µν〉 − (d − 2)uαRα〈µν〉βuβ

]

+
λ1

η2
Π〈µ

λΠν〉λ − λ2

η
Π〈µ

λΩν〉λ + λ3Ω
〈µ

λΩν〉λ .

(3.12)

This equation is, in form, similar to an equation of the Israel-Stewart theory (see section 6).

In the linear regime it actually coincides with the Israel-Stewart theory (6.1). We empha-

size, however, that one cannot claim that eq. (3.12) captures all orders in the momentum

expansion (see section 6).

Further remarks are in order. First, the κ term vanishes in flat space. If one is

interested in solving the hydrodynamic equation in flat space, then κ is not needed. Nev-

ertheless, κ contributes to the two-point Green’s function of the stress-energy tensor. We

emphasize that the term proportional to κ is not a contact term, since it contains uµ. The

λ1,2,3 terms are nonlinear in velocity, so are not needed if one is looking at small perturba-

tions (like sound waves). For irrotational flows λ2,3 are not needed. The parameter τΠ has

dimension of time and can be thought of as the relaxation time. This interpretation of τΠ

can be most clearly seen from eq. (3.12). For further discussion, see section 6.

3.2 Kubo’s formulas

To relate the new kinetic coefficients with thermal correlators, first let us consider the

response of the fluid to small and smooth metric perturbations. We shall moreover restrict

ourselves to a particular type of perturbations which is simplest to treat using AdS/CFT

correspondence. Namely, for dimensions d ≥ 4 we take hxy = hxy(t, z). For d = 3, there

are only two spatial coordinates, so we take hxy = hxy(t). Since it is a tensor perturbation

– 8 –



J
H
E
P
0
4
(
2
0
0
8
)
1
0
0

the fluid remains at rest: T = const, uµ = (1,0). Inserting this into eq. (3.11) we find, for

d ≥ 4,

T xy = −Phxy − ηḣxy + ητΠḧxy −
κ

2
[(d − 3)ḧxy + ∂2

zhxy] . (3.13)

The linear response theory implies that the retarded Green’s function in the tensor channel

is

Gxy,xy
R (ω, k) = P − iηω + ητΠω2 − κ

2
[(d − 3)ω2 + k2] . (3.14)

For d = 3 there is no momentum k, and the formula becomes

Gxy,xy
R (ω) = P − iηω + ητΠω2, d = 3 . (3.15)

Thus the two kinetic coefficients τΠ and κ can be found from the coefficients of the

ω2 and k2 terms in the low-momentum expansion of Gxy,xy
R (ω, k) in the case of d ≥ 4, and

just from the ω2 term in the case of d = 3.

3.3 Sound pole

We now turn to another way to determine τΠ, which is based on the position of the sound

pole. The fact that we have two independent methods to determine τΠ allows us to check

the self-consistency of the calculations.

To obtain the dispersion relation, we consider a (conformal) hydrodynamic system in

stationary equilibrium, that is, with fluid velocity uµ = (1,0), homogeneous energy density

ε = const ·T d and Πµν = 0. The speed of sound is defined by c2
s = dP (ε)/dε. In conformal

theory it is a constant: c2
s = 1/(d − 1). Now let us slightly perturb the system and denote

the departure from equilibrium velocity, energy density, and stress as δε, ui, and Πij.

For small perturbations, one can neglect the nonlinear terms in eq. (3.12) and the

hydrodynamic equations are identical to those of the Israel-Stewart theory. For complete-

ness, we rederive here the sound dispersion in this theory. To linear approximation in the

perturbations, we have

δT 00 = δε, δT 0i = (ε + P )ui, δT ij = c2
sδε δij + Πij . (3.16)

For sound waves travelling in x direction we take ux and Πxx as the only nonzero

components of ui and Πij , and dependent only on x and t. Energy-momentum conservation

implies

∂0(δε) + (ε + P )∂xux = 0 , (3.17)

(ε + P )∂0u
x + c2

s∂x(δε) + ∂xΠxx = 0 , (3.18)

eq. (3.12) has the form

τΠ∂0Π
xx + Πxx = −2(d − 2)

d − 1
η∂xux . (3.19)

For a plane wave, equations (3.17), (3.18) and (3.19) give the dispersion relation

−ω3τΠ − iω2 + ωk2c2
sτΠ + ωk2 2(d − 2)

d − 1

η

ε + P
+ ik2c2

s = 0. (3.20)
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At small k, the two solutions of this equation corresponding to the sound wave are

ω1,2 = ±csk − iΓk2 ± Γ

cs

(

c2
sτΠ − Γ

2

)

k3 + O(k4) , (3.21)

where

Γ =
d − 2

d − 1

η

ε + P
. (3.22)

The third solution is given by

ω3 = −iτ−1
Π + O(k2) . (3.23)

Since ω3 does not vanish as k → 0, but remains on the order of a macroscopic scale, this

third solution lies beyond the regime of validity of hydrodynamics (see also discussion in

section 6).

3.4 Shear pole

In hydrodynamics, there exists an overdamped mode describing fluid flow in a direction

perpendicular to the velocity gradient, e.g., with uy ∼ e−iωt+ikx. First-order hydrodynam-

ics gives the leading-order dispersion relation, ω = −iηk2/(ε + P ). The next correction to

this dispersion relation is proportional to k4 and thus is beyond the reach of the second-

order theory. This correction can be fully determined only in third-order hydrodynamics.

To illustrate that, we shall compute this correction here, taking the second-order theory

literally and pretending the third-order terms are not contributing. We shall than find the

expected mismatch between this (incorrect) result and the AdS/CFT computation in the

strongly coupled N = 4 SYM theory.

The perturbation corresponding to the fluid flowing in the y direction with velocity

gradient along the x direction (shear flow) involves the variables

uy(t, x), Πxy(t, x) , (3.24)

such that we get from ∂µδT µν = 0

(ε + P )∂0u
y + ∂xΠxy = 0. (3.25)

From eq. (3.12) we find

τΠ∂0Π
xy + Πxy = −η∂xuy. (3.26)

The dispersion relation is determined by

−ω2τΠ − iω + k2 η

ε + P
= 0 (3.27)

so the shear mode dispersion relation in the limit k → 0 becomes

ω = −ihk2 − ih2τΠk4 + O(k6), h =
η

ε + P
. (3.28)

The second solution, ω = −iτ−1
Π + O(k2), is obviously beyond the regime of validity of the

hydrodynamic equation (see also section 6).
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It is easy to see that expression (3.28) unjustifiably exceeds the precision of the second-

order theory: the kept correction is O(k2) relative to the leading-order term, instead of

being O(k). We can trace this to eq. (3.27), in which we keep terms to second order in ω

and k. For shear modes, however, ω ∼ k2, and the term ω2 that we keep in eq. (3.27) is

of the same order of magnitude as terms O(k4) omitted in eq. (3.27). The latter term can

appear if the equation (3.26) for Πxy contains a term ∂3
xuy that may appear in third-order

hydrodynamics. This is beyond the scope of this paper.

3.5 Bjorken Flow

So far, we have studied only quantities involved in the linear response of the fluid, for

which linearized hydrodynamics suffices. In order to determine the coefficients λ1,2,3, one

must consider nonlinear solutions to the hydrodynamic equations. One such solution is the

Bjorken boost-invariant flow [16], relevant to relativistic heavy-ion collisions.

Since hydrodynamic equations are boost-invariant, a solution with boost-invariant ini-

tial conditions will remain boost invariant. The motion in the Bjorken flow is a one-

dimensional expansion, along an axis which we choose to be z, with local velocity equal to

z/t. The most convenient are the comoving coordinates: proper time for each local element

τ =
√

t2 − z2 and rapidity ξ = arctanh (z/t). In these coordinates each element is at rest:

(uτ , uξ,u⊥) = (1, 0,0).

The motion is irrotational, and thus we can only determine the coefficient λ1, but not

λ2 or λ3.

Since velocity uµ is constant in the coordinates we chose, the only nontrivial equation

is the equation for the energy density:

Dε + (ε + P )∇ · u + Πµν∇µuν = 0. (3.29)

Boost invariance means that ε(τ) is a function of τ only. The metric is given by ds2 =

−dτ2 + τ2dξ2 + dx
2
⊥ and it is easy to see that the only nonzero component of ∇µuν is

∇ξuξ = τ . Using P = ε/(d − 1) we can write:

∂τε +
d

d−1

ε

τ
= −τ Πξξ. (3.30)

For large τ , the viscous contribution on the r.h.s. in (3.30) becomes negligible and the

asymptotics of the solution is thus given by

ε(τ) = C τ−2+ν + (viscous corrections), where ν ≡ d − 2

d − 1
, (3.31)

and C is the integration constant. As we shall see, the expansion parameter in (3.31) is

τ−ν .

Calculating the r.h.s. of eq. (3.30) using eq. (3.11) we find

−τ Πξξ = 2νητ−2 + 2ν2

(

ητΠ − 2λ1
d−3

d−2

)

τ−3 + . . . . (3.32)
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Integrating equation (3.30), one should take into account the fact that kinetic coefficients

η, τΠ and λ1 in eq. (3.32) are functions of ε, which in a conformal theory are given by the

following power laws:

η = Cη0

( ε

C

)(d−1)/d
, τΠ = τ0

Π

( ε

C

)−1/d
, λ1 = Cλ0

1

( ε

C

)(d−2)/d
, (3.33)

where, for convenience, we defined constants η0, τ0
Π and λ0

1, and we chose the constant C

to be the same as in eq. (3.31). Integrating eq. (3.30) we thus find

ε(τ)

C
= τ−2+ν − 2η0 τ−2 +

[

2(d−1)

d
η2
0 − d−2

d−1

(

η0τ
0
Π − 2λ0

1

d−3

d−2

)]

τ−2−ν + . . . . (3.34)

In section 4.4 we shall match the Bjorken flow solution in the strongly-coupled N = 4

SYM theory found in [17] (see also [18]) using AdS/CFT correspondence and determine λ1

in this theory.

In order to compare our results to the ones obtained in ref. [17], we shall write here the

equations of second-order hydrodynamics using also the alternative representation (3.12)

for Πξξ in (3.30). We obtain the following system of equations for the energy density and

the component of the viscous flow, which we define as Φ ≡ −Πξ
ξ (see [19]; c.f. [20] for

λ1 = 0):

∂τε = − d

d−1

ε

τ
+

Φ

τ
, (3.35)

τΠ∂τΦ =
2(d−2)

d−1

η

τ
− Φ − d

d − 1

τΠ

τ
Φ − d−3

d−2

λ1

η2
Φ2 . (3.36)

As should be expected, the asymptotics of the solution of this system coincides with

eq. (3.34). Equation (3.36) is different from the one used in [17] by the last two terms

proportional to τΠ and λ1.

4. Second-order hydrodynamics for strongly coupled N = 4 supersym-

metric Yang-Mills plasma

In this section, we compute the parameters τΠ, κ, and λ1 of the second-order hydrodynamics

for a theory whose gravity dual is well-known: N = 4 SU(Nc) supersymmetric Yang-Mills

theory in the limit Nc → ∞, g2Nc → ∞ [3, 21, 22]. According to the gauge/gravity duality

conjecture, in this limit the theory at finite temperature T has an effective description in

terms of the AdS-Schwarzschild gravitational background with metric

ds2
5 =

π2T 2L2

u

(

−f(u)dt2 + dx2 + dy2 + dz2
)

+
L2

4f(u)u2
du2 , (4.1)

where f(u) = 1 − u2, and L is the AdS curvature scale [14]. The duality allows one

to compute the retarded correlation functions of the gauge-invariant operators at finite

temperature. The result of such a computation would in principle be exact in the full

microscopic theory (in the limit Nc → ∞, g2Nc → ∞). As we are interested in the

– 12 –



J
H
E
P
0
4
(
2
0
0
8
)
1
0
0

hydrodynamic limit of the theory, here we compute the correlators in the form of low-

frequency, long-wavelength expansions. In momentum space, the dimensionless expansion

parameters are w =
ω

2πT
≪ 1, q ≡ k

2πT
≪ 1. (4.2)

Comparing these expansions to the predictions of the second-order hydrodynamics obtained

in sections 3.2, 3.3 and 3.5 for d = 4, we can read off the coefficients τΠ, κ, λ1.

One must be aware that the N = 4 SU(Nc) supersymmetric Yang-Mills theory posesses

conserved R-charges, corresponding to SO(6) global symmetry. Therefore, complete hy-

drodynamics of this theory must involve additional hydrodynamic degrees of freedom —

R-charge densities. Our discussion of generic conformal hydrodynamics without conserved

charges can be, of course, generalized to this case. This is beyond the scope of this paper.

Here we only need to observe that since the R-charge densities are not singlets under the

SO(6) they cannot contribute at linear order to the equations for T µν . These contributions

are therefore irrelevant for the linearized hydrodynamics we consider in sections 3.2, 3.3

and 3.4. For the discussion of the Bjorken flow in section 3.5 they are also irrelevant, since

(and as long as) we consider solutions with zero R-charge density.

4.1 Scalar channel

We start by computing the low-momentum expansion of the correlator GR
xy,xy(ω, k). To

leading order in momentum, this correlation function has been previously computed from

gravity in [23, 24]. Following [24], here we obtain the next to leading order term in the

expansion.

The relevant fluctuation of the background metric (4.1) is the component φ ≡ hy
x of

the graviton. The retarded correlator in momentum space is determined by the on-shell

boundary action

Stot[H0, k] = lim
ǫ→0

(

Sgrav
boundary[H0, ǫ, k] + Sc.t.[H0, ǫ, k]

)

, (4.3)

following the prescription formulated in [23]. Here H0(k) = H(ǫ, k) is the boundary value

(more precisely, the value at the cutoff u = ǫ → 0) of the solution to the graviton’s equation

of motion (eq. (6.6) in [24])

H(u, k) = H0(k)
φk(u)

φk(ǫ)
. (4.4)

A perturbative solution φk(u) to order w2, q2 is given by eq. (6.8) in [24]. The gravitational

action (eq. (6.4) in [24]) reduces to the sum of two terms, the horizon contribution and

the boundary contribution. The horizon contribution should be discarded, as explained

in [23] and later justified in [25]. The remaining boundary term, Sgrav
boundary[H0, ǫ, k], is

divergent in the limit ǫ → 0, and should be supplemented by the counterterm action

Sc.t.[H0, ǫ, k] following a procedure known as the holographic renormalization.1 In the case

1The holographic renormalization [26] corresponds to the usual renormalization of the composite oper-

ators in the dual CFT.
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of gravitational fluctuations, the counterterm action is [27]

Sct = − 3N2
c

4π2L4

∫

u=ǫ

d4x
√−γ

(

1 +
L2

2
P − L4

12

(

P klPkl − P 2
)

log ǫ

)

, (4.5)

where γij is the metric (4.1) restricted to u = ǫ, and

P = γijPij , Pij =
1

2

(

Rij −
1

6
Rγij

)

. (4.6)

Evaluating (4.5), we find the total boundary action2

Stot = −π2N2
c T 4

8

(

V4−
H(ǫ)H ′(ǫ)

ǫ
+

H2(ǫ)

2
− (q2 − w2)H2(ǫ)

ǫ

)

+O(w3,wq2)+O(ǫ) . (4.7)

The boundary action (4.7) is finite in the limit ǫ → 0. Its fluctuation-independent part

is S0
tot = −PV4, where P = π2N2

c T 4/8 is the pressure in N = 4 SYM, V4 is the four-

volume. The part quadratic in fluctuations gives the two-point function. Substituting the

solution (4.4) into eq. (4.7) and using the recipe of [23], we find

GR
xy,xy = −π2N2

c T 4

4

[

iw− w2 + q2 + w2 ln 2 − 1

2

]

+ O(w3,wq2) . (4.8)

Comparing eq. (4.8) to the hydrodynamic result (3.14) we obtain the pressure [28], the

viscosity [29] and the two parameters of the second-order hydrodynamics for N = 4 SYM:

P =
π2

8
N2

c T 4, η =
π

8
N2

c T 3, τΠ =
2 − ln 2

2πT
, κ =

η

πT
. (4.9)

4.2 Shear channel

The dispersion relation (3.28) manifests itself as a pole in the retarded Green’s functions

GR
ty,ty , GR

ty,xy, GR
xy,xy in the hydrodynamic approximation. To quadratic order in k this

dispersion relation was computed from dual gravity in section 6.2 of ref. [24]. Here we

extend that calculation to quartic order in k. This amounts to solving the differential

equation for the gravitational fluctuation G(u) [24]

G′′ −
(

2u

f
− iw

1 − u

)

G′ +
1

f

(

2 +
iw
2

− q2
u

+
w2[4 − u(1 + u)2]

4uf

)

G = 0 (4.10)

perturbatively in w and q assuming w ∼ q2. The solution G(u) is supposed to be regular

at u = 1 [24]. Such a solution is readily found by writing

G(u) = G0(u) +wG1(u) + q2G2(u) +w2G3(u) + wq2G4(u) + q4G5(u) + · · · (4.11)

2Terms quadratic in H in eq. (4.7) should be understood as products H(−ω,−k)H(ω, k), and an inte-

gration over ω and q is implied.
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and computing the functions Gi(u) perturbatively.3 The functions Gi(u) are given explicitly

in appendix A. To obtain the dispersion relation, one has to substitute the solution G(u)

into the equation (6.13b) of [24] and take the limit u → 0. The resulting equation for w,q4 + 2q2 − 4iw− iwq2 ln 2 + 2w2 ln 2 = 0 , (4.12)

has two solutions one of which is incompatible with the assumption w ≪ 1. The second

solution is w = − iq2
2

− i(1 − ln 2)q4
4

+ O(q6) . (4.13)

If we naively compare eqs. (3.28), (4.13), we would get τΠ = (1 − ln 2)/(2πT ), which is

inconsistent with the value obtained from the Kubo’s formula, eq. (4.9). As explained in

section 3.4, this happens because the O(k4) term in the shear dispersion relation is fully

captured only in third-order hydrodynamics. In other words, we confirm that eq. (3.28)

has an error at order O(k4).

4.3 Sound channel

The sound wave dispersion relations (3.21) appear as poles in the correlators of the diag-

onal components of the stress-energy tensor in the hydrodynamic approximation. These

correlators and the dispersion relation to quadratic order in spatial momentum were first

computed from gravity in [30]. A convenient method of studying the sound channel cor-

relators was introduced in [31]. In this approach, the hydrodynamic dispersion relation

emerges as the lowest quasinormal frequency of a gauge-invariant gravitational perturba-

tion of the background (4.1). According to [31], the sound wave pole is determined by

solving the differential equation

Z ′′ − 3w2(1 + u2) + q2(2u2 − 3u4 − 3)

uf(3w2 + q2(u2 − 3))
Z ′

+
3w4 + q4(3 − 4u2 + u4) + q2(4u5 − 4u3 + 4u2w2 − 6w2)

uf2(3w2 + q2(u2 − 3))
Z = 0 (4.14)

with the incoming wave boundary condition at the horizon (u = 1) and Dirichlet boundary

condition Z(0) = 0 at the boundary u = 0, and taking the lowest frequency in the resulting

quasinormal spectrum. The exponents of the equation (4.14) at u = 1 are ±iw/2. The

incoming wave boundary condition is implemented by choosing the exponent −iw/2 and

writing

Z(u) = f−iw/2X(u) , (4.15)

where X(u) is regular at u = 1. Thus we obtain the following differential equation for

X(u)

X ′′ +

(

2u iw
f

− 1 + u2

uf
− 4q2 u

3w2 + q2(u2 − 3)

)

X ′

+

(

(1 + u + u2)w2

u(1 + u)f
− q2

uf
− 4q2 u3(1 + iw)

uf(3w2 + q2(u2 − 3))

)

X = 0 . (4.16)

3Note that, for u real, G∗(u,−w) = G(u,w). This implies Im G0,2,3,5 = 0, Re G1,4 = 0.
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Figure 1: Sound dispersion cs = cs(q) in N = 4 SYM plasma. The dark (blue) curve shows the

sound speed dependence on wavevector, cs(q) = Rew/q, with cs(0) = 1/
√

3 (this plot is based on

numerical data first obtained in [31]). The light (red) curve corresponds to analytic approximation

derived from eq. (4.19) and valid for sufficiently small q.
This equation can be solved perturbatively in w ≪ 1, q ≪ 1 assuming w ∼ q (the expected

scaling in the sound wave dispersion relation). Rescaling w → λw, q → λq, where λ ≪ 1,

we look for a solution in the form

X(u) = X0(u) + λX1(u) + λ2X2(u) + · · · . (4.17)

The functions Xi(u) are written explicitly in appendix A. The Dirichlet condition X(0) = 0

leads to the equation for w(q):
− iwq2 +

q2
2

− 3w2

2
+
w4

16

(

π2 − 12 ln2 2 + 24 ln 2
)

− q4
12

(2 ln 2 − 8)

− w2q2
48

(

π2 − 12 ln2 2 + 48 ln 2
)

= 0 . (4.18)

To order q3, the solution is given byw = ± q√
3
− iq2

3
± (3 − 2 log 2)q3

6
√

3
+ O(q4) . (4.19)

This is the dispersion relation for the sound waves to order q3. The complete dispersion

relation can be obtained by solving the equation (4.14) numerically [31]. The sound disper-

sion curve is shown in figure 1. Comparing eq. (4.19) to eq. (3.21) we find the relaxation

time τΠ for the strongly coupled N = 4 SYM plasma:

τΠ =
2 − ln 2

2πT
. (4.20)

The result (4.20) coincides with the one obtained in section 4.1, which is a nontrivial check

of our approach.
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4.4 Bjorken flow

In order to determine λ1, we match eq. (3.34) with the solution found by Heller and

Janik [17] given by4

ε(τ) =
N2

c

2π2

[

τ−4/3 − 2η0τ
−2 + τ−8/3

(

10

3
η2
0 +

6 ln 2 − 17

36
√

3

)]

, with η0 =
1√

2 33/4
.

(4.21)

Matching by using C = N2
c /(2π2), and τΠ = (2 − ln 2)/(2πT ) from eq. (4.20), together

with ε = 3π2N2
c T 4/8 and eq. (3.33) gives

λ1 =
η

2πT
. (4.22)

Note that Heller and Janik [17] found a different value for τΠ since they matched to the

Israel-Stewart equations for hydrodynamics, and not the more general (nonlinear) equa-

tion (3.12).

5. Kinetic theory

Our analysis should be valid not only for the strongly coupled N = 4 SYM theory, but also

for all theories with conformal symmetry. In particular, it should be valid also for weakly

coupled CFT like the SYM theory at small ’t Hooft coupling, or QCD at sufficiently large

Nf at the Banks-Zaks fixed point [32]. In these cases, one expects that it is possible to

understand and compute the second-order transport coefficient from kinetic theory. We

set d = 4 in this section.

5.1 Setup

Since we are to discuss conformal transformations, our starting point is the classical Boltz-

mann equation in curved rather than flat space-time [33, 34],
[

pµ ∂

∂xµ
− Γλ

µνpµpν ∂

∂pλ

]

f(p, x) = −C[f ], (5.1)

where f(p, x) is the one-particle distribution function, pµ is the particle momentum, Γλ
µν are

the Christoffel symbols and C is the collision integral. One can easily show that conformal

transformations are a symmetry of the Boltzmann equation if particles are massless (p2 ≡
pµpµ = 0) and the collision integral transforms as C[f̄ ] → e2ω(x)C[f ].

Hydrodynamic equations are obtained by taking moments with respect to the particle

momentum pµ of eq. (5.1). More precisely, acting with
∫

dχ ≡
∫

d4pδ(−p2)θ(p0), where θ

is the step-function, on eq. (5.1) one obtains

∫

dχ
√−g

[

pµ ∂

∂xµ
− Γλ

µνpµpν ∂

∂pλ

]

f(p, x) = −
∫

dχ
√−gC[f ], (5.2)

4The quantities in eq. (4.21) can be thought of as dimensionless combinations of quantities in eq. (3.34)

with an appropriate power of an arbitrary scale parameter τ0: τ/τ0, ετd
0 , η0τ

ν
0 , Cτdν

0 etc. Due to conformal

invariance, a rescaled solution is also a solution, and the scale τ0 can be used instead of the integration

constant C, to parameterize the solutions in eq. (3.34).
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which upon partial integration leads [34] to

∇µ

∫

dχpµ√−gf(p, x) = −
∫

dχ
√−gC[f ]. (5.3)

We recall here that ∇µ is the (geometric) covariant derivative. In theories with conserved

charges or if only elastic collisions are considered,
∫

dχC[f ] = 0 and eq. (5.3) becomes the

conservation of the particle current in theories with conserved charges. Conservation of

the energy-momentum tensor5

T µν ≡
∫

dχpµpν√−gf(p, x) (5.4)

follows from eq. (5.1) upon action of
∫

dχpν and the requirement
∫

dχ
√−gpνC[f ] = 0,

∇µT µν = 0. (5.5)

Acting with
∫

dχpνpλ on eq. (5.1) gives the first equation with non-trivial contribution

from the collision integral [36],

∇µXµνλ = Iνλ, (5.6)

where

Xµνλ ≡
∫

dχpµpνpλ√−gf(p, x) , (5.7)

Iνλ ≡ −
∫

dχpνpλ√−gC[f ]. (5.8)

Similarly, an infinity of higher moment equations of the form

∇µXµν1ν2ν3... = Iν1ν2ν3... (5.9)

also follow from eq. (5.1).

Splitting the out-of-equilibrium particle distribution function into an equilibrium and

non-equilibrium part

f(p, x) = feq(p, x) (1 + δf(p, x)) , (5.10)

one defines an equilibrium energy-momentum tensor

T µν
eq = T µν ≡

∫

dχpµpν√−gfeq(p, x) , (5.11)

and a non-equilibrium component Πµν = T µν−T µν
eq , which by construction is both symmet-

ric and traceless. We shall assume that the equilibrium distribution function feq(p, x) =

feq(−u(x) · p/T (x)) depends on local temperature and velocity T, uµ, which are defined

such that the equilibrium distribution has the same energy and momentum density as f in

the rest frame defined by uµ,
∫

dχ
√−gpµ(uνp

ν) (f − feq) = 0. (5.12)

This implies that uµΠµν = 0.

5Note that sometimes pµ is traded by the introduction of a “local momentum” [35] and as a consequence

T µν would be defined without a factor of
√

−g and the form of the Boltzmann equation (5.1) changes.
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5.2 Moment approximation

While the full hierachy of moment equations should correspond to the original Boltzmann

equation, it is too complicated to be treated exactly. However, an approximate evolution

equation for systems not too far from equilibrium may be constructed. The approximation

is similar to the Grad’s 14-moment method [37].

We decompose δf into spherical harmonics,

δf =
∞
∑

l=0

f (l)
µ1...µl

(ξ)pµ1 . . . pµl , ξ = −u · p
T

, (5.13)

where f
(l)
µ1...µl(ξ) are fully symmetric, orthogonal to uµ, and traceless over any pair of indices.

By construction, the l = 0, 1 parts satisfy the constraints eq. (5.12). The approximation is

now specified by the following assumptions (c.f. [38]):

• the system is sufficiently close to equilibrium that the collision term is linear in δf

• all contributions l > 2 are subdominant

• for l ≤ 2 and expanding in some basis, all ξ dependent terms are subdominant.

This implies that

δf(p, x) ∼ T−6pµpνΠµν + O(Π2), (5.14)

and

I<νλ> ∼ T 2(x)Π<νλ>(x) + O(Π2), (5.15)

where subdominant terms have been labelled as O(Π2). It would be interesting to use

numerical techniques such as in ref. [39, 40] to test the correctness of eq. (5.14).

Splitting Xµνλ into an equilibrium and non-equilibrium part, one finds

Xµνλ
eq =

∫

dχpµpνpλ√−gfeq(p, x) ∼ T 5
[

uµuνuλ + const ×
(

∆µνuλ + perm.
)]

, (5.16)

where perm. denotes all non-trivial permutations of indices, and

Xµνλ − Xµνλ
eq ∼ TΠ(µνuλ), (5.17)

where (µ1µ2 . . . µn) denotes symmetrization with respect to the indices µ1, µ2, . . . , µn. Pro-

jection <> on the moment equation (5.6) thus gives

Πνλ+τΠ

[

ΠνλDlnT + ∆ν
α∆λ

βDΠαβ + Πνλ∇µuµ + 2Πµ<ν∇µuλ>
]

= −ησνλ+O(Π2), (5.18)

where the proportionality constants have been denoted by η and τΠ, respectively (the

ratio of these can be calculated when specifying feq, c.f. [19]). Introducing the completely

symmetric tensor

θµρ =
1

2
∆α

µ∆β
ρ (∇αuβ + ∇βuα) (5.19)
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one can decompose

Πµ<ν∇µuλ> = −Πα(νΩλ)
α + Πα(νθ λ)

α − 1

3
Παβ∆νλθαβ. (5.20)

Rewriting

θµρ = ∇⊥
<µuρ> +

1

3
∆µρ∇⊥

γ uγ (5.21)

such that

Πµ<ν∇µuλ> = −Πα(νΩλ)
α +

1

3
Πνλ∇γuγ − Πα<νΠλ>

α

2η
+ O(Π3), (5.22)

we find

Πνλ = −ησνλ−τΠ

[

DΠ<νλ> +
4

3
Πνλ(∇ · u)

]

+2τΠΠα(νΩλ)
α+

λ1

η
Πα<νΠλ>

α +O(Π3) , (5.23)

where D ln T = −1
3(∇ · u) + O(Π2) has been used.

Eq. (5.23), which was derived from kinetic theory here, corresponds to the more general

eq. (3.12) with λ2 = −2τΠη and λ3 = κ = 0. Note that λ1 contains a contribution from

eq. (5.22) as well as from the collision integral eq. (5.15) (see below). What is commonly

referred to as Israel-Stewart theory amounts to setting λ1 = 0. Most of the time, also

the terms involving ∇ · u and the vorticity Ωµν are dropped. However, note that simply

dropping terms involving ∇·u ruins the conformal symmetry of the equation, and thus the

resulting equation cannot be the correct hydrodynamic description of the system dynamics

beyond leading order.

5.3 The structure of the collision integral

In this subsection we study the structure of the collision integral eq. (5.15) for a simplified

model where C = (u · p)
f−feq

τΠ
. We will use a gradient expansion similar to the Chapman-

Enskog method (c.f. [41]).

Let us decompose f into

f = feq(−u · p/T ) (1 + f1 + f2 + . . .) , (5.24)

where f1, f2 represent terms of first and second order in gradients, respectively. Solving

eq. (5.1) iteratively in gradients we find

f1 =
τΠ

p · u
f ′
eq

feq
pµpα∇µ

uα

T
,

f2 =
τ2
Π

(p · u)3
(p · u)f ′′

eq + Tf ′
eq

feq
pµpνpαpβ∇µ

(uα

T

)

∇ν

(uβ

T

)

− τ2
Π

(p · u)2
f ′
eq

feq
pµpνpα∇ν∇µ

uα

T
+

2τ2
Π

(p · u)2
f ′
eq

feq
pµpνpα∇µ

(uα

T

)

∇ν ln T . (5.25)

From eq. (5.15) and conformal symmetry, to second order in gradients the collision integral

I<γδ> can contain terms σ<γ
λ σδ>λ and Dσ<γλ> + 1

3σγλ(∇ · u) but (in particular) not Ωγδ
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or Rγδ since these terms would involve anti-symmetrization of indices which is not allowed

by eq. (5.25).

This indicates that the terms involving κ, λ3 in eq. (3.12) are not contained in the

Boltzmann equation. The Boltzmann equation is only an approximation of the underlying

quantum field theory, so it is possible that these terms — which are second order in

gradients — have been lost in this coarse-graining process. It may be possible to compute

the coefficients of these terms for QCD in the weak-coupling regime by going beyond the

lowest order gradient expansion given in [42].

6. Analysis of the Müller-Israel-Stewart theory

6.1 Causality in first order hydrodynamics

It is instructive to compare the second-order conformal hydrodynamics to the Müller-Israel-

Stewart theory. Müller [7] and independently later Israel and Stewart [8 – 10], considered

how to extend the 1st order hydrodynamics. Their primary motivation was to eliminate

the apparent relativistic acausality of the 1st order hydrodynamic equations. Formally,

the acausality is the result of the fact that the 1st order hydrodynamic equations are not

hyperbolic [43, 10, 44]. The problem is most clearly seen by considering the linearized

equation for a diffusive mode (e.g., shear stress or charge diffusion), which is first order in

temporal but second in spatial derivatives. A discontinuity in initial conditions for such a

mode propagates at infinite speed. In other words, the influence of an initial condition at

a point in space is instanteneously felt by any other point.

It should be clear, however, as emphasized, e.g., by Geroch [45, 46] and others [47]

that the modes which defy causality are those which are not supposed to be described

by hydrodynamics (i.e., microscopically short wavelengths, which is clear when one thinks

about discontinuities). Nevertheless, for numerical simulations of relativistic hydrodynamic

systems such superluminal propagation is a nuisance because in such simulations one ex-

trapolates hydrodynamic equations to the microscopic scale, even though the modes, or

the configurations, which are being studied are hydrodynamic. For example, superluminal

propagation makes posing initial value problem difficult: even if the initial hypersurface is

space-like, the initial values at different points can influence each other and an attempt to

specify them independently leads to unacceptable singular solutions [48, 47].

Since the problem lies in the domain where the theory is not applicable, one can safely

modify the theory in this domain, without disturbing physical predictions. This is the

essence of the solution which Müller and Israel proposed by extending the set of variables.

The resulting system of equations is hyperbolic. Here we shall write down explicitly the

system of equations of Israel and Stewart, restricting to the case of conformally invariant

system without a conserved charge that we study in this paper.

6.2 Hydrodynamic variables and second order hydrodynamics

As we have already emphasized in section 2.2 the hydrodynamics should be viewed as

a controllable expansion in gradients of the hydrodynamic variables. The choice of the

– 21 –



J
H
E
P
0
4
(
2
0
0
8
)
1
0
0

variables, or fields, can be aided by applying the requirement that a linearized system of

equations has solutions whose frequency vanishes in the hydrodynamic limit, i.e., when the

wave vector k vanishes. We call such linearized modes the hydrodynamic modes. Fluctu-

ations of conserved densities are automatically hydrodynamic because their equations are

conservation laws and constant fields (ω = 0, k = 0) are trivial solutions of them.

Hence, for a system without conserved charges the set of hydrodynamic variables con-

sists of the densitites of energy and momentum, represented by 4 independent covariant

variables ε and uµ (u·u = −1). All other quantities in hydrodynamic description are instan-

taneous functions of these variables and their derivatives, such as, e.g., Πµν (section 2.2).

How should one extend 1st order hydrodynamics to higher derivatives? The systematic

way, as we argued in section 2.2 and 3, is to continue the expansion (2.16) and add all

possible terms of the second order in derivatives, as we did in eq. (3.11).

Instead, Müller, Israel and Stewart take a more phenomenological point of view. They

consider Πµν — the viscous part of the the momentum flow — as a set of independent addi-

tional variables. The equations for these variables are not given by any exact conservation

laws, but by phenomenological expansions in the set of independent variables, which now

includes also Πµν :

τΠDΠµν = −Πµν − ησµν . (6.1)

The first term in eq. (6.1) has a simple intuitive meaning: in the absence of velocity

gradients (σµν = 0) the viscous momentum flows Πµν do not vanish instanteneously (as in

eq. (2.16)), but relax to zero on a microscopic but finite timescale τΠ. The 5 equations (6.1)

together with 4 conservation laws ∇µT µν = 0 form the system of Müller-Israel-Stewart

equations for 9 variables: ε, uµ and Πµν . (For a non-conformal system with a conserved

charge this number becomes 14.)

In the phenomenological laws in eq. (6.1) one usually considers only terms linear in

the variables Πµν and uµ. There is a priory no reason to neglect nonlinear terms. By

comparing eq. (6.1) with eq. (3.12) we see that the conformal invariance requires presence

of terms proportional to Πµν(∇·u), which are non-linear, but contain the same number of

derivatives. These terms are beyond the standard linear Israel-Stewart phenomenological

theory. In addition, bilinear terms proportional to λi are also allowed to same order in

derivatives. Such terms are relevant for simulations of the strongly coupled Quark-Gluon

Plasma in heavy ion collisions.

The term proportional to κ, which vanishes in flat space, has not been considered by

Israel and Stewart but, as we have seen, is necessary to determine the correlation functions

of stress-energy tensor.

Note that in this scheme both Πµν and σµν are of the same, i.e., first order in the

expansion around equilibrium. The term DΠµν contains one more derivative compared to

Πµν and is thus of the second order. Without loss of precision, to second order, one can

trade DΠµν for −D(ησµν) or vice versa. Similar substitutions can be made in other second-

order terms we found, as we did when going from eq. (3.11) to eq. (3.12). Therefore, within

their precision, equations of Israel-Stewart (6.1) (or, in general nonlinear case, eq. (3.12))

give the same result as the systematic expansion in derivatives.
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6.3 Causality and the domain of applicability

The attractive feature of introducing new variables is that the resulting equations are now

first order in derivatives and, most importantly, they are hyperbolic. This means that

discontinuities propagate with finite velocities even in the shear channel. For the shear

channel this velocity (i.e., the characteristic velocity [43, 49, 44]) can be easily obtained

from the dispersion relation (3.27) by taking k → ∞:

vdisc =

√

η

τΠ (ε + P )
. (6.2)

Although the Israel-Stewart system of equations (6.1) or our equations (3.12), have

attractive features from the point of view of the mathematical formulation, and are es-

pecially suitable to, e.g., numerical simulations, care should be taken attributing physical

significance to this fact. The domain of applicability of these equations is still the hydro-

dynamic domain: ω, k must be small compared to microscopic scales. The second order

hydrodynamic equations increase the precision compared with the first order equations,

but only if we stay within the hydrodynamic domain.

In practice, it is convenient to use equations which are mathematically well-behaved

even where they lose physical significance. However, care should be taken when examining

the solutions by always considering only their features in hydrodynamic domain — slow

and long-wavelength modes. In particular, the velocity in eq. (6.2) does not correspond

to any physical propagation. Similarly, the superluminal propagation which one recovers

according to eq. (6.2) in the first order theory when τΠ → 0 is the result of extrapolating

the theory outside of hydrodynamic domain.

Nevertheless it is worthwhile to note that, with the value of τΠ in strongly coupled N =

4 SYM that we find in eq. (4.9), the characteristic velocity (6.2) equals 1/
√

2(2 − log 2) =

0.6 . . ., i.e., less than the velocity of light. Therefore, the system of second order equations

we wrote down can be used in, e.g., numerical simulations without additional modifications

often needed to ensure relativistic causality and prevent occurence of singular solutions.

6.4 Entropy and the second law of thermodynamics

Let us consider the question of how the second law of thermodynamics is obeyed by the sec-

ond order hydrodynamics. For that purpose take the projection of the energy-momentum

conservation equation on uν :

0 = −uν∇µT µν = Dε + (ε + P )∇·u + Πµν∇µuν , (6.3)

where we used definition eq. (3.1), u·u = −1 and uνΠµν = 0. For a system without a

conserved charge, the thermodynamic entropy density s is a function of the energy density

such that ds = dε/T , and it also obeys sT = ε + P . Thus, eq. (6.3) can be writen as

T∇µ(suµ) = −Πµν∇µuν . (6.4)

Since s is the entropy in the local rest frame, equation (6.4) expresses, in a covariant form,

the rate of entropy production in the local rest frame.
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For a conformal system the tensor Πµν is traceless and one can replace ∇µuν on the

r.h.s. of eq. (6.4) with σµν/2. Using the first order hydrodynamic relation (3.2) one then

finds

∇µ(suµ) =
η

2T
σµνσµν + (3rd order terms). (6.5)

Thus, if η > 0, the entropy increases, provided the 3rd order terms on the r.h.s. of eq. (6.5)

are negligible compared to the 2nd order term written out. This is always true within the

domain of validity of hydrodynamics.

Müller and Israel observed [7, 8] that the third order terms in eq. (6.5) in their theory

can be written as the divergence of a current. Indeed, even a complete, conformally covari-

ant, term proportional to τΠ in eq. (3.12) can be written in such a way. Solving (3.12) for

σµν and substituting into eq. (6.4) we find

∇µ(suµ) =
1

2ηT
ΠµνΠµν + ∇µ

(

τΠ

4ηT
ΠαβΠαβuµ

)

− 1

2ηT
Πµν (κOµν

2 + λ1Oµν
3 + λ2Oµν

4 + λ3Oµν
5 ) + . . . , (6.6)

where we used τΠ/η = const·T−d and the lowest order relation D ln T = −(d− 1)∇·u. The

ellipsis in eq. (6.6) denotes 4-th order corrections. Therefore, defining non-equillibrium

entropy as

snoneq = s − τΠ

4ηT
ΠαβΠαβ (6.7)

one can cancel the 3rd order term proportional to τΠ in ∇µ(snonequ
µ). The correction to

the equillibrium entropy in eq. (6.7) has an intuititive meaning — a non-homogeneous state

of the system, in which Πµν 6= 0, has smaller entropy than the equilibrium state.

The remaining terms, such as e.g., κΠµνOµν
2 /(ηT ), do not appear to be total deriva-

tives. They are also not positive definite. However, this fact cannot be used to conclude

that, e.g., κ must be zero. Our explicit AdS/CFT calculation shows that κ 6= 0. As we

discussed above, the 3rd order terms in eq. (6.5) do not violate the second law of thermody-

namics if we stay within the domain of applicability of hydrodynamics. In this domain the

3rd order terms must be small compared to the second order term on the r.h.s. of eq. (6.5),

which is positive definite.

Further detailed discussions on the issue of the local entropy current can be found

in [50, 51].

6.5 Additional non-hydrodynamic modes

Another interesting consequence of introducing more variables, à la Müller-Israel-Stewart,

is that the number of modes, or branches of the dispersion relation ω(k) increases, as we

have seen in sections 3.3 and 3.4. As should be expected, the additional poles are not

hydrodynamic: those frequencies ω(k) do not vanish as k → 0, but remain on the order

of the microscopic scale. It should be clear from the discussion above that the position of

these poles need not be predicted correctly by the second-order theory — they lie outside

of the regime of its validity.
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In fact, now with the knowldedge of the position of Green’s function singularities

in N = 4 SYM at strong coupling [31] we can say that there are infinitely many such

poles. They are given by the solutions of equations such as (4.10) or (4.14). Only the

lowest branch ω(k) can be matched by hydrodnamic theory. To describe correctly the full

Green’s function one needs to introduce infinitely many degrees of freedom — to describe

infinitely many poles. Any theory of finite number of degrees of freedom is a trunctation.

This truncation is controllable only for the hydrodynamic variables, which describe the

poles with frequencies vanishing as k → 0. The controlling parameter is the ratio of these

frequencies to a microscopic scale, i.e., T in the conformal theory, and the precision can

be, in principle, increased by increasing the order of the expansion in this parameter.

Conceptually, let us imagine that we did succeed in writing the infinite set of ex-

tended hydrodynamic equations for infinitely many variables, mentioned in the previous

paragraph. It is easy to realize that in a theory with gravity dual this set will be math-

ematically equivalent (in the linear regime) to differential equations (4.10) or (4.14). The

set of infinitely many 4-dimensional fields is represented by a 5-dimensional field in these

equations.

7. Conclusion

We have determined the most general form of relativistic viscous hydrodynamics of a

conformal fluid (with no conserved charges) to second order in gradients. We find that

conformal invariance reduces the number of allowed terms relative to more general, non-

conformal, hydrodynamics. As already known, at first order in gradients only one kinetic

coefficient, the shear viscosity η, enters the equations. At second order we find five allowed

terms with coefficients τΠ (customarily referred to as relaxation time), κ, λ1, λ2 and λ3.

The general viscous hydrodynamic equations we obtained can be matched to AdS/CFT

calculations in strongly coupled N = 4 supersymmetric Yang-Mills theory, and for this

theory we thus determined three of the five second-order coefficients: τΠ, κ and λ1. We also

find that for a weakly coupled conformal plasma describable by the Boltzmann equation,

two of the coefficients vanish. However, at least one of these coefficients, i.e., κ, is not zero

for strongly coupled N = 4 super Yang-Mills theory. It would be interesting to understand

how this coefficient emerges as the approximation of the Boltzmann equation breaks down

at large coupling.

We emphasized the already known fact that the equations of Müller-Israel-Stewart

theory, despite their appearance, are only applicable in the hydrodynamic regime, where

their predictions coincide with those of the second-order gradient expansion. We also

pointed out that variants of the Israel-Stewart theory used in numerical simulations of

relativistic plasmas frequently miss terms which are not only allowed, but also required

for conformally invariant theories. If the quark gluon plasma is approximately conformal,

then the second-order hydrodynamic equation found in this paper should be used instead.

One may hope that the values of the kinetic coefficients τΠ and λ1, found in N = 4 SYM

theory, may serve as crude estimates for their values in the strongly coupled regime of the

quark-gluon plasma.
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A. Perturbative solutions of the shear and the sound mode equations

The shear mode. The functions Gi(u) entering the perturbative solution (4.11) of the

equation (4.10) are

G0(u) = Cu , G1(u) = iC

(

u − 1 +
u

2
ln

u + 1

2

)

, G2(u) =
C(1 − u)

2
, (A.1)

G3(u) = − C

48

(

6π2u − 24(u + 1) ln 2 − i12πu ln2 2 − 6u ln2 2 + 18u ln2(u − 1)

+24(u+1) ln(u+1)+12u ln 2 ln
1 + u

1 − u
−12u ln(1 + u) ln

1 + u

1 − u
+6u ln2 1 + u

1 − u

−24uLi2

(

1 − u

2

)

+ 12u ln(u − 1)(ln 2 − 2 ln(1 − u) − iπ)

)

,

G4(u) =
C

16

(

−4πu−4i(1+3u) ln 2+4i ln(1+u)+16iu ln
1 + u

u
+2iu ln(u − 1)

(

ln
1 + u

1 − u

)

− 4iu ln
1 + u

1 − u
+ 2πu ln

1 + u

1 − u
− 2iu ln(1 + u) ln

1 + u

1 − u
+ 2iu ln2 1 + u

1 − u

)

,

G5(u) =
C

4

(

1 − u − 2u ln
1 + u

2u

)

, (A.2)

where C is a constant, Li2(z) is a polylogarithm.

An alternative way to obtain the dispersion relation (4.12) is the following: the func-

tions Gi(u), i = 0, 1, . . . 5 satisfy the inhomogeneous differential equations

(1 − u2)G
′′

i − 2uG
′

i + 2Gi = Fi(u) , (A.3)

with F0 = 0, F1 = −i(1+u)G
′

0−i/2G0, etc. The homogeneous part of (A.3) is the Legendre

differental equation with the Legendre functions P1(u) = u and Q1(u) = u
2 ln 1+u

1−u − 1 as

solutions. Therefore G0 = Cu, and for i ≥ 1

Gi(u) = P1(u)

∫ 1

u
Q1(u

′)Fi(u
′)du′ − Q1(u)

∫ 1

u
P1(u

′)Fi(u
′)du′ , (A.4)
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regular at u = 1. Finally, the values at u = 0 are obtained by

Gi(u = 0) =

∫ 1

0
uFi(u)du , (A.5)

i.e. G0(0) = 0, G1(0) = −iC, and

G2(0) =

∫ 1

0
G0(u)du = C/2 ,

G3(0) =
C

4

∫ 1

0
u

[

(2 + 3u) ln
1 + u

2
+ 7u − 2

1 + u

]

du = C
ln 2

2
, (A.6)

etc., and hence we find eq. (4.12).

The sound mode. The functions Xi(u) of the perturbative solution (4.17) of the equa-

tion (4.16) are

X0(u) =
(q2 + q2u2 − 3w2)C

4q2 , X1(u) = − iCwf(u)

2
, (A.7)

X2(u) =
C

48q2

[

2q2(8 − 8u − iπ(1 + u2) − (1 + u2) 2 ln 2)

+3w4(π2 − 6iπ − ln 8(ln 8 − 4))

+q2w2(6iπ(2+u2)−π2(1+u2)−24(u2−u+ln 2)+ln 8(ln 8+u2(4+ln 8)))

−2(q2 − 3w2)(q2(1 + u2) − 3w2) (−iπ + log (1 − u))

+4(q4(1 + u2) + 9w4(ln 2 − 1) − 3w2q2 (ln 2 − 2 + u2(ln 2 + 1)
)

) ln (1 + u)

+3w2
(q2(1 + u2) − 3w2

)

ln2(1 + u)

+2
(q2(1 + u2) − 3w2

) (q2 − 3w2(1 + ln 2) + 3w2 ln (1 + u)
)

ln (1 − u)

+6w2
(q2(1 + u2) − 3w2

)

Li2

(

1 + u

2

)]

. (A.8)
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